
Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 106

Unit 5 Query Execution

Structure:
5.1 Introduction

Objectives

5.2 Introduction to Physical-Query-Plan Operators

Scanning tables

Sorting while scanning tables

5.3 One-Pass Algorithms for Database Operations

5.4 Nested-Loop Joins

Tuple-based nested-loop join

Iterator for a tuple-based nested-loop join

5.5 Two-Pass Algorithms based on Sorting

5.6 Two-Pass Algorithms Based on Hashing

5.7 Index-Based Algorithms

5.8 Buffer Management

5.9 Parallel Algorithms for Relational Operations

5.10 Using Heuristics in Query Optimisation

5.11 Basic Algorithm for Executing Query Operations

5.12 Summary

5.13 Glossary

5.14 Terminal Questions

5.15 Answers

5.1 Introduction

In the previous unit, you studied query optimization and its various

components such as query execution algorithm, heuristics in query

optimization, semantic query optimization, multi-query optimization and

applications. You also learned execution strategies for SQL sub queries and

query processing for SQL updates. Now, you will study about query

execution in this unit.

The query processor is the group of components of a DBMS that turns user

queries and data-modification commands into a sequence of database

operations and executes those operations. Since SQL lets us express

queries at a very high level, the query processor must supply a lot of detail

regarding how the query is to be executed.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 107

In this unit, we will study query execution, that is, the algorithms that

manipulate the data of the database. We shall cover the principal methods

for execution of the operations of relational algebra. We shall introduce you

to the basic building blocks of physical query plans. You will be also

introduced to the more complex algorithms that implement operators of

relational algebra efficiently; these algorithms also form a necessary part of

physical query plans. You will also study about "iterators". Iterator is an

object that enables a programmer to traverse a container.

Objectives:

After studying this unit, you should be able to:

 explain the physical-query-plan operators

 discuss the one-pass algorithm for database operations

 identify and demonstrate nested-Loop joins

 explain two-pass algorithms based on sorting and hashing

 discuss Index-based algorithms

 discuss buffer management

 demonstrate parallel algorithms for relational operations

 explain heuristics in query optimisation

 identify basic algorithms for executing query operations

5.2 Introduction to Physical-Query-Plan Operators

Physical query strategy is made from operators. Each of these operators

implements one step of the plan. The physical operators are often specific

implementations for one of the operators of the relational algebra, although

we also require physical operators for other tasks that do not involve an

operator of the relational algebra.

For instance, we often need to "scan" a table. In other words, we need to

bring into the main memory, each tuple of some relation that is an operand

of a relational-algebra expression.

5.2.1 Scanning tables

One of the most fundamental things that we can do in a physical query plan

is to read the entire list of contents of a relation R. This step is especially

necessary when we take the union or join of R with another relation. A

variation of this operator includes an easy predicate. Here we read only

those tuples of the relation R that suit the predicate. There are primarily two

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 108

fundamental approaches for locating the tuples of a relation R. They are given

below:

1. In several cases, there is an index on any attribute of R. We may be able

to use this index to get all the tuples of R. For instance, a sparse index

on R can be used to lead us to all the blocks holding R, even if we don't

know which blocks these are. This operation is known as index-scan.

2. In certain cases, the relation R is stored in an area of secondary

memory with its tuples set in blocks. The blocks which contain the tuples

of R are known to the system. It is possible to get the blocks one by one.

This operation is known as table-scan.

We shall resume the study of index-scan in section 5.7, where we will

discuss the implementation of the operator. But an important observation for

now is that we can use the index not only to get all the tuples of the relation

it indexes, but also to get only those tuples that have a specific value (or a

specific range of values) in the attribute or attributes that make the search

key for the index.

5.2.2 Sorting while scanning tables

There can be several reasons behind sorting a relation as we read its

tuples. One reason could be that the query could include an ‘ORDER BY’

clause, (we will be using capital letters in some words to emphasise and

highlight them.) requiring that a relation be sorted. Another reason is that

different algorithms for relational-algebra operations need one or both the

arguments to become sorted relations.

The physical-query-plan operator which is sort-scan gets a relation R, as

well as a measurement of the attributes in which sort is to be made. It

produces R in that sorted order. There are certain ways in which sort-scan

can be implemented. They are given below:

1. In case R is too large to fit in main memory, then the multi-way merging

approach is a good choice. However, rather than storing the final sorted

R back on the disk, we can produce one block of the sorted R at a time,

since its tuples are needed.

2. If we have to produce a relation R sorted by attribute a, and there is a B-

tree index present on a, or R is stored as an indexed-sequential file

ordered by a, then a scan of the index allows us the production of R in

the desired order.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 109

3. If the relation R that we want to retrieve in sorted order is sufficiently

small to fit in the main memory, then we can retrieve its tuples by using a

table scan or index scan. Then we can use one of the many possible

main-memory sorting algorithms which are also efficient.

Significance of Iterators

When Iterators are composed within query plans, they support proficient

execution. They contrast with a materialization strategy, where the result of

each operator is produced entirely and not in parts. They are stored either

on the disk or the main memory.

When iterators are used, many operations become active. Tuples pass

among operators as needed. This reduces the need for storage.

Self Assessment Questions

1. The system knows the blocks containing the tuples of R, and it is not

possible to get the blocks one by one. (True/ False)

2. We can use the index not only to get all the tuples of the relation it

indexes, but also _________ .

3. It is open function that initiates the process of getting tuples, but it does

not get a tuple. (True/ False)

Activity 1

In a group of four, analyze and explain how the index can be used not

only to get all the tuples of the relation indexed by it as well as those

tuples that possess a specific value in the attribute or attributes that make

up the search key for the index.

5.3 One-Pass Algorithms for Database Operations

We are about to begin our study of one of the most important topics in query

optimization: how to execute the individual steps - for instance, a join or

selection - of a logical query plan?

The selection of an algorithm for every single operator is an essential

element of the process of transformation of a logical query plan into a

physical query plan. The proposed algorithms for operators largely fall into

three classes:

1. Index-based technique which is explained in Section 5.7

2. Sorting-based technique which is covered in Section 5.5.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 110

3. Hash-based technique which is described in Section 5.6 and Section

5.9, among other places.

Additionally, it is possible to divide algorithms for operators into the following

degrees of cost and difficulty:

(a) There are some methods which work without a set limit on the size of

the data. These methods use three or more passes to do their jobs, and

are natural, recursive generalizations of the two-pass algorithms;

(b) Some methods involve reading the data only once from disk. These are

the one-pass algorithms. They work when at least one of the arguments

of the operation fits in main memory. But with selection and projection

operations there are exceptions.;

There are certain methods that can be used for data that is too large for

the available main memory but not for the largest possible data sets. An

example of such an algorithm is the two-phase, multiway merge sort.

These two-pass algorithms are described by reading data first time from

the disk, processing it somehow, writing all or majority of it to the disk,

and then again reading it for further processing through the second

pass.

In this section, we shall concentrate on the one-pass methods. However,

both in this section and subsequently, we shall classify operators into three

broad groups:

1. Full-relation, binary operations: All other operations are in this class:

set and bag versions of union, intersection, difference, joins, and

products. Except for bag union, each of these operations requires at

least one argument to be limited to size M, if we are to use a one-pass

algorithm.

2. Tuple-at-a-time, unary operations: These operations require neither

an entire relation, nor a large part of it, in memory at once. This enables

us to read one block at a particular time, use the main memory buffer,

and produce the output.

3. Fill-relation, unary operations: These one-argument operations need

to consider all or most of the tuples in memory at once. So one-pass

algorithms are limited to relations that are approximately of size hl (the

number of main-memory buffers available) or less. The operations of this

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 111

class that we consider here are Y (the grouping operator) and S (the

duplicate elimination operator).

One-pass algorithms for tuple-at-a-time operations

The tuple-at-a-time operations (σ) (R) and (R) have observable algorithms,

regardless of whether relation fits in main memory. You can understand the

blocks of R individually into an input buffer; execute the operation on every

tuple. Besides, you can move the selected tuples or the projected tuples to

the output buffer. Refer to Figure 5.1 for the performance of selection or

projection on relation R.

Since the output buffer may be an input buffer of some other operator or

may be sending data to a user or application, we do not count the output

buffer as needed space. Thus, we basically want M – 1 for the input buffer

irrespective of B, where M is available memory buffer/block, B is the block

taken by each argument

The disk I/O necessity for this method depends on just how the argument

relation R is given. If R is primarily on disk, then the cost is whatsoever it

takes to execute a table-scan or index-scan of R.

R

unary
op

Output
buffer

Input
buffer

Figure 5.1: Performance of a Selection or Projection on Relation R

Self Assessment Questions

4. The selection of an algorithm for each operator is one of the most

fundamental elements of the process of transformation of a logical

query plan into a physical query plan. (True/ False)

5. Tuple-at-a-time, unary operations require neither _____________ nor

_________.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 112

Activity 2

If the output of the operation can be stored on full cylinders, we waste

almost no time writing. Analyze what you have understood from this

statement. Explain with an example.

5.4 Nested-Loop Joins

Before proceeding to the more complex algorithms in the next sections, we

shall turn our attention to a family of algorithms for the join operator called

"nested loop" joins.

These algorithms are, in a sense, "one-and-a-half" passes, since in each

difference one of the two arguments includes its tuples read only once.

Contrary to this, the other argument will be read repeatedly.

5.4.1 Tuple-based nested-loop join

The effortless variation of nested-loop join has loops that range over single

tuples of the relations concerned. In this algorithm, which we call, tuple-

based nested-loop join, we calculate the join R(X, Y) S(Y, Z) as below:

For each tuple s in S DO

For each tuple r in R DO

If r and s join to make a tuple t

Then

Output is t

S is called the outer relation and R the inner relation of the join. One buffer

is for outer relation and one buffer for inner relation. Then the I/O cost of this

algorithm is T(R)T(S) disk. It is expensive since it examines every pair of

tuples in the two relations. However, there are many situations where this

algorithm can be modified to have much lower cost. A next development

looks much more cautiously at the way tuples of R and S are split between

blocks, and utilizes as much of the memory as it can to decrease the

number of disk I/O's as we go through the inner loop.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 113

5.4.2 Iterator for a tuple-based nested-loop join

One benefit of a nested-loop join is that it fits well into an iterator structure. It

prevents us from storing intermediate relations on disk in some situations.

The iterator for R S is easy to build from the iterators for R and S, which

support functions R. Open (). The code for the three iterator functions for

nested-loop join is in Figure 5.2. It makes the assumption that neither

relation R nor S is empty.

Open () {

R. Open () ;

S. Open () ;

s : = S. GetNext () ;

}

GetNext () {

REPEAT {

r : = R. GetNext () ;

IF (r = NotFound) { /* R is exhausted for the current s */

R. Close () ;

s : = S. GetNext () ;

IF (s = NotFound) RETURN NotFound ;

/* both R and S are exhausted */

R. Open () ;

r : = R. GetNext () ;

}

}

UNTIL (r and s join) ;

RETURN the join of r and s ;

}

Close () {

R. Close () ;

S. Close () ;

}

Figure 5.2: Iterator Functions for Tuple-based Nested-loop Join of R and S

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 114

The functions used in Figure 5.2 as defined below:

Open():

R.Open() will initialize a main-memory structure to represent a set of

tuples of R.

GetNext():

 REPEAT R.GetNext() will continue until tuple r is not returned.

Close():

R.Close() will release the memory.

Self Assessment Questions

6. _________ joins can be used for relations of any size. One relation

does not need to necessarily fit in the main memory.

7. Nested-loop does not allow us to avoid storing intermediate relations

on disk in some situations. (True/ False)

5.5 Two-Pass Algorithms based on Sorting

We shall now begin the study of multi-pass algorithms for performing

relational algebra operations on relations that are larger than what the one-

pass algorithms of Section 5.3 can handle. We focus on two-pass

algorithms, where data from the operand relations is examine into main

memory, processed in somehow written out to disk again and then reread

from disk to complete the operation.

We can naturally extend this idea to any number of passes, where the data

is read many times into main memory. However we concentrate on two-

pass algorithms because:

1. Two passes are usually enough, even for very large relations

2. Generalizing to more than two passes is not hard

In this section, we consider sorting as a tool for implementing relational

operations. The fundamental idea is below. If we have a big relation R,

where B(R) is greater than M, the number of memory buffers available, then

we can continually:

1. Read h1 blocks of R into the main memory.

2. Sort the Y blocks in the main memory, using a main-memory sorting

algorithm which is also efficient. Such an algorithm will take an amount

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 115

of processor time that is just slightly more than linear in the number of

tuples in main memory. So we expect that the time to sort will definitely

not exceed the disk I/O (input/output) time for step (1).

3. Finally, write the sorted list into M blocks of disk. We shall refer to the

contents of these blocks as one of the sorted sublists of R.

All the algorithms we shall discuss then use a second pass to ''merge"

the sorted sublists in some way to execute the desired operator.

Self Assessment Questions

8. In _________ algorithms, data is read into main memory from the

operand relations.

9. In the second pass, all the sorted sublists are _________.

5.6 Two-Pass Algorithms Based on Hashing

There is a family of hash-based algorithms that attack the same problems

as in Section 5.5. The essential idea behind all these algorithms is as

follows. If the data is extremely big to store in main-memory buffers, hash all

the tuples of the argument or arguments using an appropriate hash key. For

all the general operations, there is a way to select the hash key so all the

tuples that require to be measured together when we perform the operation

have the same hash value.

We then perform the operation by working on one bucket at a time (or on a

pair of buckets with the same hash value in the case of a binary operation).

In fact we have decreased the size of the operand(s) by a factor equivalent

to the number of buckets.

If there are M buffers available, then we can pick M as the number of

buckets. This helps in gaining a factor of M in the size of the relations that

we can handle easily. Notice that the sort-based algorithms of Section 5.5

also gain a factor of M by pre-processing, although the sorting and hashing

approaches achieve their similar gains by rather different means.

Partitioning Relations by Hashing: To begin, let us review the way we

would take a relation R by using M buffers and partitioning R into M - 1

buckets of roughly equal size.

We shall assume that h is the hash function, and that h takes complete

tuples of R as its argument (i.e., all attributes of R are part of the hash key).

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 116

We connect one buffer with every bucket. The last buffer holds blocks of R,

individually.

Every tuple t in the block is hashed to bucket h (t) and copied to the suitable

buffer. But if that buffer is full, we write it out to disk, and initialize one more

block for the similar bucket. Finally, we write out the final block of each

bucket if it is not empty.

The algorithm is given in more detail in Figure 5.3. Note that it assumes that

tuples, while they may be variable-length, are never too large to fit in an

empty buffer.

Figure 5.3: Partitioning a Relation R into M - 1 Buckets

Self Assessment Questions

10. If there are M buffers available and we can pick M as the number of

buckets, we can gain a factor of M in the size of the relations that we

can handle. (True/ False)

11. The essential idea behind all hash-based algorithms is _________.

5.7 Index-Based Algorithms

The existence of an index on one or more attributes of a relation makes

available some algorithms that would not be feasible without the index.

Index-based algorithms are especially useful for the selection operator.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 117

However, algorithms for join and other binary operators also use indexes to

very good advantage.

In this section, we shall introduce these algorithms. We also continue with

the discussion of the index-scan operator for accessing a stored table with

an index that we began in Section 5.2.1. To appreciate many of the issues,

we first need to study "clustering" indexes.

Clustering and non-clustering indexes

A relation is said to be 'clustered’ if its tuples are packed into the least blocks

that can possibly hold those tuples. All the analysis we have done so far

assume that relations are clustered.

We may also speak of clustering index, which are indexes on an attribute or

else attributes such that all the tuples through a fixed value for the search

key of this index appear on approximately as few blocks as can hold them.

It is noteworthy that a relation that is not clustered cannot have a clustering

index, but a clustered relation can also have non-clustering indexes. (See

Figure 5.4)

a1 a1 a1 a a a1 1 1 a1 a a a1 1 1 a1

All the tuplesa1

Figure 5.4: A Clustering Index having all the Tuples with a Fixed Value Packed

into (close to) the Minimum Possible Number of Blocks

Self Assessment Questions

12. The existence of an index on one or more attributes of a relation makes

available some algorithms that _________.

13. Index-based algorithms are extremely useful for the selection operator.

(True/ False)

5.8 Buffer Management

We have assumed that operators on relations have some number M of

main-memory buffers that they can utilize to store required data. Actually,

these buffers are not often allocated in advance to the operator, as well as

the value of M might differ, depending on system conditions.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 118

The essential task of creating main-memory buffers accessible to

processes, for example, queries that act on the database is given to the

buffer manager.

It is the responsibility of the buffer manager to let processes get the memory

that they need for reduction of the delayed and unsatisfiable requests. The

role of the buffer manager is illustrated in Figure 5.5.

Buffer
manager

Requests

Buffers

Read/Writes

Figure 5.5: Role of Buffer Manager

Buffer management architecture

Buffer management architectures are broadly divided into two main

categories:

1. In most of the relational database management system, the buffer

manager controls main memory directly

2. The buffer manager allocates buffers in virtual memory. It permits the

operating system to decide which buffers are actually in main memory at

any time and which are in the “swap space" on disk that the operating

system manages. Many main memory DBMSs and “object-oriented"

DBMSs operate this way.

Whichever approach a DBMS uses, the same problem arises: how to fit the

number of buffers into the available main memory. The buffer manager

should try to limit the number of buffers in usage so that they can fit in it.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 119

When the buffer manager controls main memory directly, and requests

exceed available space, it has to select a buffer to empty, by returning its

contents to disk. If the buffered block has not been changed, then it may

simply be erased from main memory, but if the block has changed it must be

written back to its place on the disk.

When the buffer manager allocates space in virtual memory, it has the

option to allocate more buffers than can fit in main memory. However, if all

these buffers are really in use, then there will be "thrashing," a common

operating-system problem, where many blocks are moved in and out of the

disk's swap space. In this situation, the system spends the majority time in

swapping blocks, whereas very little useful work gets done.

Normally, when the Database Management System is initialized then

several buffers parameter are set. We would expect that this number is set

so that the buffers occupy the available main memory, regardless of

whether the buffers are allocated in main or virtual memory.

Self Assessment Questions

14. The buffers are rarely allocated in advance to the _________ , and the

value of M may vary depending on system conditions.

15. If the buffered block has not been changed, then it may simply be

erased from _________.

5.9 Parallel Algorithms for Relational Operations

Database operations, frequently being time-consuming and involving a lot of

data, can generally profit from parallel processing. In this section, we shall

review the principal architectures for parallel machines. We then

concentrate on the "shared-nothing" architecture, which appears to be the

most cost effective for database operations, although it may not be superior

for other parallel applications.

There are simple modifications of the standard algorithms for most relational

operations that will exploit parallelism almost perfectly. That is, the time to

complete an operation on a p processor machine is about l/p of the time it

takes to complete the operation on a uni-processor.

Models of parallelism

You can say that collection of processors is the heart of parallel machines.

Often the number of processors p is large, in the hundreds or thousands.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 120

We shall assume that each processor has its own local cache, which we do

not show explicitly in our diagrams.

In most organizations, each processor also has local memory, which we do

show. Of great importance to database processing is the fact that along with

these processors are many disks, perhaps one or more per processor or in

some architecture a large collection of disks accessible to all processors

directly.

Additionally, parallel computers all have some communications facility for

passing information among processors. In our diagrams, we show the

communications as if there were a shared bus for all the elements of the

machine.

However, in practice a bus cannot interconnect as many processors or other

elements as are found in the largest machines. So the interconnection

system is, in much architecture, a powerful switch, perhaps augmented by

busses that connect subsets of the processors in local clusters.

The three most important classes of parallel machines are:

1. Shared Memory: In this architecture, as illustrated in Figure 5.6, each

processor has access to all the memory of all the processors. That is,

there is a single physical address space for the entire machine, rather

than one address space for each processor.

M M M

P P P

Figure 5.6: A Shared-Memory Machine

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 121

 The diagram given in Figure 5.6 is, in fact too extreme, signifying that

processors have no private memory at all. Rather, each processor has

some local main memory, which it typically uses whenever it can.

However, it has direct access to the memory of other processors when it

needs to. Large machines of this class are of the NUMA (non uniform

memory access) kind, meaning that it takes rather more time for a

processor to access data in a memory that "belongs" to some other

processor than it does to access its "own" memory, or the memory of

processors in its local cluster.

However, the difference in memory-access times is not great in current

architectures. Rather, all memory accesses, no matter where the data is,

take much more time than a cache access. So the critical issue is

whether or not the data a processor needs is in its own cache.

M M M

P P P

Figure 5.7: A Shared-Disk Machine

2. Shared Disk: In this architecture, as shown in Figure 5.7; every

processor has its own memory, which is not accessible directly from

other processors. However, the disks are accessible from any of the

processors through the communication network.

Disk controllers manage the potentially competing requests from

different processors. The number of disks stored and processors need

not be identical.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 122

3. Shared Nothing: Here, all processors have their own memory and their

own disk or disks, as in Figure 5.8. All communication is via

communication network, from processor to processor. For example, if

one processor p wants to read tuples from the disk of another Processor

Q, then processor P sends a message to Q asking for the data. Then, Q

obtains the tuples from its disk and ships them over the network in

another message, which is received by P.

M

P P P

M M

Figure 5.8: A Shared-Nothing Machine

The shared-nothing architecture is the most commonly used architecture for

high-performance database systems.

Shared nothing machinery is comparatively economical to make, however

when we design algorithms for these machines we should be aware that it is

costly to send data from one processor to another.

Normally, data must be sent between processors in a message, which has

considerable overhead associated with it. Both processors must execute a

program that supports the message transfer, and there may be contention

or delays associated with the communication network as well.

Usually, the value of a message can be broken down into a large fixed

overhead and a small amount of time per byte transmitted. Thus, there is an

important advantage to designing a parallel algorithm so that communication

among processors includes large amounts of data sent at once.

For instance, we might buffer several blocks of data at processor P all

bound for processor Q. If Q does not need the data immediately, it may be

much more efficient to wait until we have a long message at P and then

send it to Q.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 123

Self Assessment Questions

16. The disks are accessible from any of the processors through the

_________ network.

17. The number of disks stored and processors need not be identical.

(True/ false)

5.10 Using Heuristics in Query Optimisation

One of the chief heuristic rules is that before applying the JOIN or other

binary operations, one must apply SELECT and PROJECT operations.

 A query tree is a tree data structure. Its purpose is to communicate to a

relational algebra expression. It symbolises the relational algebra

operations as internal nodes, and signifies the input relations of the

query as leaf nodes of the tree.

 An implementation of the query tree includes execution of an internal

node operation when its operands are accessible and then swapping

that internal node with the relation which results from the execution of

the operation.

 The execution ends at the execution of the root node. The output is the

result relation for the query.

Heuristic Optimization of Query Trees

 Different relational algebra expressions can be equivalent. In other

words, they can correspond to the same query.

 A standard initial query tree is made by the query parser.

 This first query tree is then transformed by the heuristic query optimiser

into a final query tree that is efficient to execute.

SELECT NAME FROM

EMPLOYEE, WORKS_ON, PROJECT WHERE PNAME='Aquarius' AND

ESSN=SSN AND BDATE > '1-DEC-56'AND PNUMBER=PNO;

For Execution of this query, we do not require creating a huge file containing

the CARTESIAN PRODUCT of the whole EMPLOYEE, PROJECT, and

WORKS_ON files. This query basically requires a single record from the

PROJECT relation and only the employee records for those whose date of

birth is after '1-DEC-56'.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 124

The basic outline of a Heuristic Algebraic Optimization Algorithm is given

below:

1. Break up any SELECT operations by means of conjunctive operations

into a cascade of SELECT operations.

2. Move each and every SELECT operation as far down the query tree as

is allowed by the attributes which are involved in the select condition.

3. Rearrange the leaf nodes of the tree by the following criteria:

 Position the leaf node relation with the most limiting SELECT

operations so that they are executed first in the query representation.

 Ensure that the ordering of leaf nodes does not cause CARTESIAN

PRODUCT operation.

4. Through a subsequent SELECT operation, combine a CARTESIAN

PRODUCT operation in the tree into a JOIN operation, but the condition

should signify a join condition.

5. Break down and move lists of projection attributes down the tree as

much as possible by creating new PROJECT operations as desired.

6. Recognize those sub-trees that stand for those groups of operations that

can be implemented by only one algorithm.

Self Assessment Questions

18. The _________ terminates at the execution of the root node. This

makes the result relation for the query.

19. The first query tree is transformed by the heuristic query optimizer into

a final query tree that is efficient to execute. (True/ False)

5.11 Basic Algorithm for Executing Query Operations

External Sorting is the essential algorithm for implementation of query

operation. Sorting is one of the main algorithms used in query processing

(an example is ORDER BY- clause which requires a sorting).External

sorting is appropriate for huge files of records stored on disk that do not fit

completely in main memory.

A sort-merge approach is utilized by the usual external sorting algorithm.

The algorithm consists of two phases. They are given below:

1. Sorting Phase

2. Merging Phase

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 125

Implementing the SELECT Operation

Many search algorithms are feasible for selecting records from a file. The

following search techniques are available:

 Linear search (brute force)

 Binary search

 Using a primary index (or hash function)

 Using a primary index to retrieve multiple records

 Using a clustering index to retrieve multiple records

 Implementing the JOIN Operation

 Using a secondary (B+-tree) index on an equality comparison

The JOIN operation is one of the lengthiest operations in query processing.

Most common methods for performing a join are:

1. Nested-loop join (brute force)

2. Sort-merge join

3. Single-loop join (using an access structure to retrieve the matching

records)

4. Hash-join

Implementing PROJECT as well as Set Operations

 Implementation of a PROJECT operation is easy if attribute lists includes

a key of relation R.

 If attribute list does not contain a key of R, duplicate tuples must be

eliminated.

 Set operations (u, n,-,x) are at times expensive to implement. The

Cartesian product operation is especially quite expensive.

 Since union, intersection, set difference apply only to union–compatible

relations, their implementation can be done by using certain variations of

the sort-merge technique.

 Hashing can moreover be utilised to execute UNION, INTERSECTION,

and SET DIFFERENCE.

Implementing Aggregate Operations

 The aggregate operations (MAX, MIN, SUM, AVERAGE, COUNT), when

applied to an entire table, can be computed by a table scan or else by

using an appropriate index. For example:

SELECT MAX (SALARY) FROM EMPLOYEE;

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 126

If an ascending index on salary exists for the EMPLOYEE relation, it can

be utilized (or else we can scan the entire table).

 when a GROUP The index can also be used for computing the SUM,

AVERAGE, and COUNT aggregates. However, the index must be

dense, i.e. there must bean index entry for each and every record in the

main file.

 The aggregate operator must be applied independently to each group of

tuples BY clause is used in a query.

Self Assessment Questions

20. The index can be used for _________.

21. _________ can be used to implement INTERSECTION, UNION and

SET DIFFERENCE.

5.12 Summary

Let us recapitulate the important points discussed in this unit:

 The principal methods for execution of the operations of relational

algebra are; scanning, hashing, sorting, and indexing are the major

approaches.

 One reason is that various algorithms for relational-algebra operations

require either one or both of their arguments to be known as sorted

relations.

 Another reason is that the query could include an ORDER BY clause,

requiring that a relation should be sorted.

 Iterators support proficient execution when they are composed within the

query plans.

 We have assumed that operators on relations have available some

number M of main-memory buffers that can be used to store the needed

data.

 The basic algorithm for execution of query operation is External Sorting.

 External sorting is suitable for huge files of records stored on disk that

do not fit entirely in main memory.

 The number of buffers is a parameter set when the DBMS is initialised.

5.13 Glossary

 Iterators: An object that enables a programmer to traverse a container.

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 127

 NUMA: Non Uniform Memory Access. It is a computer memory design

used in multiprocessing, where the memory access time depends on the

memory location relative to a processor.

 Scanning tables: A variation of this operator involves a simple

predicate, where we read only those tuples of the relation R that satisfy

the predicate.

 Shared disk: The disks are accessible from any of the processors

through the communication network.

 Table-scan: Those blocks which contain the tuples of R are known to

the system.

 Two-pass algorithms: Data from the operand relations is read into

main memory and processed in some way written out to disk again. This

data is then read again from the disk to complete the operation.

5.14 Terminal Questions

1. Explain the physical query plan operators.

2. Discuss the One-Pass algorithm for database.

3. What is buffer management?

4. Describe the most important classes of parallel machines.

5.15 Answers

Self Assessment Questions

1. False

2. Secondary

3. Open function

4. True

5. False

6. Nested-loop

7. False

8. merged

9. Two-pass

10. True

11. Last

12. non-clustering

13. False

14. Operator

Advanced Database Management System Unit 5

Manipal University of Jaipur B1649 Page No. 128

15. Main memory

16. Communication

17. True

18. Execution

19. True

20. JOIN

21. Hashing

Terminal Questions

1. Physical query plans are built from operators. Every single operator

implements one step of the plan. Refer Section 5.2 for more details.

2. One-pass algorithms read the data only once from disk. Refer Section

5.3 for more details.

3. Buffer manager allows processes to get the memory they need, while

the unsatisfiable and delayed requests are minimized. Refer Section 5.8

for more details.

4. Shared memory, shared disk, etc. are the important phases of parallel

machines. Refer Section 5.9 for more details.

References:

 Raghu Ramakrishnan, Johannes Gehrke, Database Management

Systems, (3rdEd.), McGraw-Hill, Higher Education

 Peter Rob, Carlos Coronel, Database Systems: Design, Implementation,

and Management, (7thEd.), Thomson Learning

 Silberschatz, Korth, Sudarshan, Database System Concepts, (4th Ed.),

McGraw-Hill

 Elmasari Navathe, Fundamentals of Database Systems, (3rdEd.),

Pearson Education Asia

E-references:

 www.wisegeek.com

 www.dbms.edu.in

 www.neilconway.org/docs/dbms_notes.pdf

 www.unixspace.com/context/

