
Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 1

Unit 1 Fundamentals of Computer Architecture

Structure:

1.1 Introduction

 Objectives

1.2 Computational Model

The basic items of computations

The problem description model

The execution model

1.3 Evolution of Computer Architecture

1.4 Process and Thread

Concept of process

Concept of thread

1.5 Concepts of Concurrent and Parallel Execution

1.6 Classification of Parallel Processing

Single instruction single data (SISD)

Single instruction multiple data (SIMD)

Multiple instruction single data (MISD)

Multiple instruction multiple data (MIMD)

1.7 Parallelism and Types of Parallelism

1.8 Levels of Parallelism

1.9 Summary

1.10 Glossary

1.11 Terminal Questions

1.12 Answers

1.1 Introduction

As you all know computers vary greatly in terms of physical size, speed of

operation, storage capacity, application, cost, ease of maintenance and

various other parameters. The hardware of a computer consists of physical

parts that are connected in some way so that the overall structure achieves

the pre-assigned functions. Each hardware unit can be viewed at different

levels of abstraction. You will find that simplification can go on to still deeper

levels. You will be surprised to know that many technologies exist for

manufacturing microchips.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 2

The complexity of integration is likely to go on increasing with time. As a

consequence smaller and more powerful computers will go on appearing.

Evidently, which components are used and how they are interconnected,

dictates what the resulting computer will be good at doing. Thus, in a faster

computer, you will find special components connected in a special way that

enhances the speed of operation of the designed computer.

Different computer designs can have different components. Moreover, the

same components can be interconnected in variety of ways. Each design

will provide a different performance to the users. Exactly what components

interconnected in what ways will produce what performance is the subject of

Computer Architecture. In this unit, we will study about the basics of

Computer Architecture.

Objectives:

After studying this unit, you should be able to:

 explain computational model and its types

 state the different levels of evolution of computer architecture

 differentiate between process and thread

 describe the concepts of concurrent and parallel execution

 identify the various classification of parallel processing

 list the types of parallelism

 list the levels of parallelism

1.2 Computational Model

Computer architecture may be defined as “The Structure and behavior of a

Conceptual model of a Computer System to perform the required

functionalities”.

Computer Architecture deals with the issue of selection of hardware

components and interconnecting them to create computers that achieve

specified functional, performance and cost goals.

Progressing in the earlier mentioned way, the hardware (at least the

electronic part) breaks down to the following simple digital components.

 Registers

 Counters

 Adders

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 3

 Multiplexers

 De-multiplexers

 Coders

 Decoders

 I/O Controllers

A common foundation or paradigm that links the computer architecture and

language groups is called a Computational Model. The concept or idea of

computational model expresses a higher level of abstraction than can be

achieved by either the computer architecture or the programming language

alone, and includes both.

The computational model consists of the subsequent three abstractions:

1. The basic items of computations

2. The problem description model

3. The execution model

Unlike the ordinary delusions, the set of abstractions that must be selected

to state computational models is not very clear. Some criteria will define

fewer but relatively basic computational models, while a wide variety of

criteria will result in a fairly a huge quantity of different models.

1.2.1 The basic items of computations

This concept recognises the basic items of computation. This is a

requirement of the items to which the computation is referred and the sort of

computations (operations) that are executed on them. For example, in the

von Neumann computational model, the fundamental items of computation

are data.

This data will normally be characterised by individual bodies so as to be

capable of distinguishing among several different data items in the course of

a computation. These identifiable bodies are commonly called variables in

programming languages and are put into operation by register addresses or

memory in architectures.

The acknowledged computational models, such as Turing model, the von

Neumann model and the data flow model stand on the theory of data. These

models are briefly explained as below:

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 4

The Turing machine architecture operates by manipulating symbols on a

tape. In other words, a tape with innumerable slots exists, and at any one

point in time, the Turing machine is in a specific slot. The machine can

change the symbol and shift to a different slot based on the symbol read at

that slot. All of this is inevitable.

The von-Neumann architecture explains the stored-program computer

where data and instructions are stored in memory and the machine works

by varying its internal state, In other words, an instruction operates on some

data and changes the data. So naturally, there is a state maintained in the

system.

Dataflow architecture expressively distinguishes the conventional von

Neumann architecture or control flow architecture. There is a lack of a

program counter in Dataflow architectures. The execution of instructions in

dataflow systems is exclusively concluded depending on the accessibility of

input arguments to the instructions. Even though dataflow architecture has

not been used in any commercially successful computer hardware, it is

extremely appropriate in many software architectures such as database

engine designs and parallel computing frameworks.

On the other hand, there are various models independent of data. In these

models, the basic items of computation are:

 Messages or objects sent to them needing an associated manipulation

(as in the object-based model)

 Arguments and the functions applied on them (applicative model)

 Elements of sets and the predicates declared on them (predicate-logic-

based model).

1.2.2 The problem description model

The problem description model implies in cooperation the style and method

of problem description. The problem description style specifies the way

troubles in a specific computational model are expressed. The style is either

procedural or declarative. The algorithm to work out the problem is shown in

a procedural style. A particular result is then stated in the form of an

algorithm. In a declarative style, all the facts and dealings significant to the

specified problem have to be stated.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 5

There are two modes for conveying these relationships and facts. The first

employs functions, as in the applicative model of computation, while the

second declares the relationships and facts in the form of predicates, as in

the predicate-logic-based computational model. Now, we will study the

second component of the problem description model that is the problem

description method. It is understood in a different way for the procedural and

the declarative style. In the procedural style, the problem description model

states the way in which the clarification of the known problem has to be

explained. On the contrary, while using the declarative style, it states the

method in which the difficulty itself has to be explained.

1.2.3 The execution model

This is the third and the final constituent of computational model. It can be

divided into three stages.

 Interpretation of how to perform the computation

 Execution semantics

 Control of the execution sequences

The first stage pronounces the analysis of the computation, which is

strongly linked to the problem description method. The selection of problem

description method and the analysis of the computation are mutually

dependent on one another.

The subsequent stage of the execution model states the execution

semantics. This is taken as a rule that identifies the way a particular

execution step is to be performed. This rule is, certainly, linked with the

selected problem description method and the way the implementation of the

computation is understood. The final stage of the model states the rule of

the execution sequences. In the basic models, implementation is either

control driven or data driven or demand driven.

 In Control driven execution, it is supposed that there is a program

consisting of a succession of instructions. The execution sequence is

then absolutely specified by the command of the directions.

Nevertheless, explicit control instructions can also be used to identify an

exit from the implied execution sequence.

 Data-driven execution is symbolised by the rule that an operation is

made active instantly after all the needed input data is available. Data-

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 6

driven execution control is characteristic of the dataflow model of

computation.

 In Demand-driven execution, the operations will be made active only

when their implementation is required to attain the ultimate result.

Demand-driven execution control is normally used in the applicative

computational model.

Self Assessment Questions

1. The ___________ model refers to both the style and method of problem

description.

2. In a ___________ , the algorithm for solving the problem is stated.

3. ___________ execution is characterised by the rule that an operation is

activated as soon as all the needed input data is available.

1.3 Evolution of Computer Architecture

With the advent of revolutionary development in area of semiconductor

technology, the computer architecture has gradually evolved in stages over

the years. The main target of such evolution is to enhance the performance

of the processors. History of computers begins with the invention of the

abacus in 3000 BC, followed by the invention of mechanical calculators in

1617. The years beyond 1642 till 1980 are marked by inventions of zeroth,

first, second and third generation computers. The years beyond 1980 till

today, are marked by fourth generation computers. Fifth generation

computers are still under research and development.

Zeroth Generation Computers: The zeroth generation of computers

(1642-1946) was distinctly made available by the invention of largely

mechanical computers. In 1642, a French mathematician named Blaise

Pascal invented the first mechanical device which was called Pascaline. In

1822, Charles Babbage, an English mathematician, invented a machine

called Difference Engine to compute tables of numbers for naval navigation.

Later on, in the year 1834, Babbage attempted to build a digital computer,

called Analytical Engine. The analytical engine had all the parts of a modern

computer i.e. the store (memory unit), the mill (computation unit), the

punched card reader (input unit) and the punched/ printed output (output

unit). As all the basic parts of modern computers were thought out by

Charles Babbage, he is known as Father of Computers.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 7

First Generation Computers: The first generation of computers (1946-

1954) was marked by the use of vacuum tubes or valves as their basic

electronic component. Although these computers were faster than earlier

mechanical devices, they had many disadvantages. First of all, they were

very large in size. They consumed too much power and generated too much

heat, when used for even short duration of time. They were very unreliable

and broke down frequently. They required regular maintenance and their

components had also to be assembled manually.

Some examples of first generation computers are ENIAC (Electronic

Numerical Integrator and Calculator), EDVAC (Electronic Discrete Variable

Automatic Computer), EDSAC (Electronic Delay Storage Automatic

Calculator), UNIVAC I (Universal Automatic Calculator) and IAS machine

(Institute for Advanced Study machine built by Princeton’s Institute for

Advanced Study). The basic design of first generation computer is shown in

figure 1.1.

MAIN
MEMORY

ARITHMETIC
LOGIC
UNIT

PROGRAM
CONTROL

UNIT

SECONDARY
MEMORY

UNIT

CARD
READER

INPUT-OUTPUT DEVICES

CPU

CARD
PUNCH

PRINTER

Figure 1.1: Basic Design of a First Generation Computer

IAS machine was a new version of the EDVAC, which was built by von

Neumann. The basic design of IAS machine is now known as von Neumann

machine, which had five basic parts - the memory, the arithmetic logic unit,

the program control unit, the input and output unit as shown in figure 1.2.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 8

Memory Unit Input Unit

Control Unit

Arithmetic Logic Unit

Accumulator

Output Unit

Figure 1.2: Basic Design of von Neumann Machine

Second Generation Computers: The first generation of computers

became out-dated, when in 1954, the Philco Corporation developed

transistors that can be used in place of vacuum tubes. The second

generation of computers (1953-64) was marked by the use of transistors in

place of vacuum tubes. Transistors had a number of advantages over the

vacuum tubes. As transistors were made from pieces of silicon, so they

were more compact than vacuum tubes.

The second-generation computers were smaller in size and generated less

heat than first generation computers. Although they were slightly faster and

more reliable than earlier computers, they also had many disadvantages.

They had limited storage capacity, consumed more power and were also

relatively slow in performance. Some examples of second generation

computers are IBM 701, PDP-1 and IBM 650.The basic design of a second

generation computer is shown in figure 1.3.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 9

ALU CIRCUITS

DATA REGISTER

OPERATOR’S
CONSOLE

INDEX
REGISTERS

CONTROL
UNIT

MAIN
MEMORY

UNIT

MEMORY
CONTROL

UNIT

I/O
PROCESSOR

I/O
PROCESSOR

I/O
PROCESSOR

I/O
PROCESSOR

DISK/
DRUM

CONTROL
UNIT

CARD
READER

DRUM TELE-
PROCESSING

DEVICE
PRINTER

DISK

MAGNETIC
DISK

STORAGE

MAGNETIC
DRUM

STORAGE

INPUT
CPU

Figure 1.3: Basic Design of Second Generation Computer

Third Generation Computers: Second generation computers became out-

dated after the invention of ICs. The third generation of computers

(1964-1978) was marked by use of Integrated Circuits (ICs) in place of

transistors. As hundreds of transistors could be put on a single small circuit,

so ICs were more compact than transistors. The third generation computers

removed many drawbacks of second generation computers. The third

generation computers were even smaller in size, very less heat generated

and required very less power as compared to earlier two generation of

computers. These computers required less human labour at the assembly

stage.

Some examples of third generation computers are IBM 360, PDP-8, Cray-1

and VAX. The basic design of a third generation computer is shown in figure

1.4.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 10

464-bit FLOATING
POINT REGISTERS

FIXED-POINT
ARITHMETIC
LOGIC UNIT

DECIMAL
ARITHMETIC
LOGIC UNIT

FLOATING
POINT

ARITHMETIC
LOGIC UNIT

INTERNAL BUSES

MEMORY
CONTROL

UNIT

MAIN
MEMORY

IOP
SELECTOR
CHANNEL

IOP
MULTIPLEXOR

CHANNEL

TAPE
CONTROL

UNITe

DISK
CONTROL

UNIT

CONTROL
UNIT

CONTROL
UNIT

CONTROL
UNIT

TAPE
STORAGE

PRIVE

DISK
DRIVES CONSOLE CARD

READER

LINE
PRINT

ER

16-32bit GENERAL
REGISTERS

Figure 1.4: Basic Design of a Third Generation Computer

Fourth Generation Computers: The third generation computers became

out-dated, when it was found in around 1978, that thousands of ICs could

be integrated onto a single chip, called LSI (Large Scale Integration).

The fourth generation of computers (1978-till date) was marked by use of

large-scale Integrated (LSI) circuits in place of ICs. As thousands of ICs

could be put onto a single circuit, so LSI circuits are still more compact than

ICs. In 1978, it was found that millions of components could be packed onto

a single circuit, known as Very Large Scale Integration (VLSI). VLSI is the

latest technology of computer that led to the development of the popular

Personal Computers (PCs), also called as Microcomputers.

Some examples of fourth generation computers are IBM PC, IBM PC/AT,

386, 486, Pentium and CRAY-2. The basic design of a fourth generation

computer is shown in figure 1.5.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 11

CPU 1

Scalar
Processor

Vector
Processor

I/O Devices

I/O processor
(Upto 64 channels)

System
Controller

System
Controller

I/O processor
(Upto 64 channels)

MAIN MEMORY
(64-256 MB)

MAIN MEMORY
(64-256 MB)

I/O Devices

CPU 2

Scalar
Processor

Vector
Processor

CPU 3

Scalar
Processor

Vector
Processor

CPU 4

Scalar
Processor

Vector
Processor

Figure 1.5: Basic Design of a Fourth Generation Computer

Fifth Generation Computers: Although fourth generation computers offer

too many advantages to users, still they have one main disadvantage. The

major drawback of these computers is that they have no intelligence on their

own. Scientists are now trying to remove this drawback by making

computers, which would have artificial intelligence. The fifth generation

computers (Tomorrow's computers) are still under research and

development stage. These computers would have artificial intelligence.

They will use USLI (Ultra Large-Scale Integration) chips in place of VLSI

chips. One USLI chip contains millions of components on a single IC.

Robots have some features of fifth generation computers.

Self Assessment Questions

4. _________ was the first mechanical device, invented by Blaise Pascal.

5. ___________ was a new version of the EDVAC, which was built by von

Neumann.

6. The fourth generation of computers was marked by use of Integrated

Circuits (ICs) in place of transistors. (True/ False)

7. Personal Computers (PCs), also called as Microcomputers.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 12

 (True/ False)

Activity 1:

Using the Internet, find out about Fifth Generation Computer Systems

project (FGCS), idea behind it, implementation, timeline and outcome

1.4 Process and Thread

Every process presents the resources required to execute a program. A

process has an executable code, a virtual address space, open handles to

system objects, a unique process identifier, a security context, minimum and

maximum working set sizes, environment variables, a priority class, and at

least one thread of execution. Each process is begun with a single thread,

often called the primary thread, but can create additional threads from any

of its threads.

A thread is the entity within a process that can be scheduled for execution.

All threads of a process share its system resources and virtual address

space. Additionally, each thread maintains exception handlers, thread local

storage, a scheduling priority, a unique thread identifier, and a set of

structures the system will utilise to save the thread context until it is

scheduled. The thread context includes the thread's set of machine

registers, a thread environment block, the kernel stack and a user stack in

the address space of the thread's process. Threads can also have their own

security context, which is valuable in impersonating clients.

The basic difference between process and thread is that every process has

its own data memory location but all related threads can share same data

memory and have their individual stacks. A process is a collection of virtual

memory space, code, data and system resources whereas thread is a code

which will be serially executed within a process.

Let’s study these concepts in detail.

1.4.1 Concept of process

In operating system terminology, instead of the term ‘program’, the notion of

process is used in connection with execution. It designates a commission or

job, or a quantum of work dealt with as an entity. Consequently, the

resources required, such as address space, are typically allocated on a

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 13

process basis. Each process has a life cycle, which consists of creation, an

execution phase and termination.

Process creation involves the following four main actions:

 Setting up the process description: Usually, operating systems

describe a process by means of a description table which is called the

Process Control Block or PCB. A PCB contains all the information

relevant to the whole life cycle of a process. It holds basic data such as

process identification, owner, process status, description of the

allocated address space and so on.

 Allocating address space: Allocation of address space to a process

for execution is the second major component of process creation. This

consists of two approaches: sharing the address space among the

created processes (shared memory) or allocating distinct address

spaces to each process (per-process address spaces).

 Loading the program into the allocated address space:

Subsequently, the executable program file will usually be loaded into

the allocated memory space.

 Passing the process description to the scheduler: Finally, the

process thus created is passed to the process scheduler which

allocates the processor to the competing processes. The process

scheduler manages processes typically by setting up and manipulating

queues of PCBs. Thus, after creating a process the scheduler puts the

PCB into ready-to-run processes.

Process scheduling involves three key concepts: the declaration of distinct

process states, the specification of the state transition diagram and the

statement of a scheduling policy. As far as process states are concerned,

there are three basic states connected with scheduling:

 The ready-to-run state

 The running state and

 The wait (or blocked) state.

In the wait state, they are suspended or blocked waiting for the occurrence

of some event before getting ready to run again. When the scheduler

selects a process for execution, its state is changed from ready-to-run to

running. Finally, a process in the wait can go into the ready-to-run state, if

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 14

the event it is waiting for has occurred. You can see various process states

in figure 1.6.

Figure 1.6: Process States

1.4.2 Concept of thread

A thread is a fundamental unit of CPU consumption, which consists of a

program counter, a stack, and a set of registers and a thread ID.

Conventional heavyweight processes consist of a single thread of control. In

other words, there is one program counter, and one sequence of

instructions that can be carried out at any specified time.

At present, multi-threaded applications have taken the place of single thread

applications. These have multiple threads within a single process, each

having their own program counter, stack and set of registers, but sharing

common code, data, and certain structures such as open files. See figure

1.7 to find out the differences between the two processes.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 15

Figure 1.7: Single and Multithreaded Processes

Threads are of great use in recent programming particularly when a process

has multiple tasks to perform in parallel of the others. This is mainly helpful

when one of the tasks may block, and it is needed to permit the other tasks

to continue without blocking. For example, in a word processor, a

background thread may check spelling and grammar while a foreground

thread processes user input (keystrokes), while yet a third thread loads

images from the hard drive, and a fourth does periodic automatic backups of

the file being edited.

Self Assessment Questions

8. All threads of a process share its virtual address space and system

resources. (True/ False)

9. When the scheduler selects a process for execution, its state is

changed from ready-to-run to the wait state. (True/ False)

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 16

1.5 Concepts of Concurrent and Parallel Execution

Concurrent execution is the temporal behaviour of the N-client 1-server

model where one client is served at any given moment. This model has a

dual nature; it is sequential in a small time scale, but simultaneous in a

rather large time scale. In this situation, the key problem is how the

competing clients, let us say processes or threads, should be scheduled for

service (execution) by the single server (processor). The scheduling policy

may be viewed as covering the following two aspects:

Pre-emption rule: It deals with whether servicing a client can be interrupted

or not and, if so, on what occasions. The pre-emption rule may either

specify time-sharing, which restricts continuous service for each client to the

duration of a time slice, or can be priority based, interrupting the servicing of

a client whenever a higher priority client requests service.

Selection rule: It states how one of the competing clients is selected for

service. The selection rule is typically based on certain parameters, such as

priority, time of arrival, and so on. This rule specifies an algorithm to

determine a numeric value, which we will call the rank, from the given

parameters. During selection, the ranks of all competing clients are

computed and the client with the highest rank is scheduled for service.

Parallel execution: Parallel execution is associated with N-client N-server

model. Having more than one server, allows the servicing of more than one

client at the same time; this is called parallel execution. Parallel computing

is the simultaneous use of multiple compute resources to solve a

computational problem. It may take the use of multiple CPUs. A problem is

broken into discrete parts that can be solved concurrently. Each part is

further broken down to a series of instructions and instructions from each

part execute simultaneously on different CPUs as shown in figure 1.8.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 17

problem instruction

CPU

CPU

CPU

CPU

tN t3 t2 t1

Figure 1.8: Parallel Computing Systems

Thus, we can say that a computer system is said to be Parallel Processing

System or Parallel Computer if it provides facilities for simultaneous

processing of various set of data or simultaneous execution of multiple

instruction. On a computer with more than one processor each of several

processes can be assigned to its own processor, to allow the processes to

progress simultaneously. If only one processor is available the effect of

parallel processing can be simulated by having the processor run each

process in turn for a short time.

Self Assessment Questions

10. Concurrent execution is the temporal behaviour of the _______ Model.

11. During selection, the ranks of all competing clients are computed and

the client with the highest rank is scheduled for service. (True/ False)

1.6 Classification of Parallel Processing

The core element of parallel processing is Central Processing Units (CPUs).

The essential computing process is the execution of sequence of instruction

on asset of data. The term stream is used here to denote a sequence of

items as executed by single processor or multiprocessor. Based on a

number of instruction and data streams can be processed simultaneously,

Flynn classifies the computer system into four categories. They are:

(a) Single Instruction Single Data (SISD)

(b) Single Instruction Multiple Data (SIMD)

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 18

(c) Multiple Instruction Single Data (MISD)

(d) Multiple Instruction Multiple Data (MIMD)

Let’s learn more about them.

1.6.1 Single instruction single data (SISD)

Computers with a single processor that is capable of executing scalar

arithmetic operations using a single instruction stream and a single data

stream are called SISD (Single Instruction Single Data) computers. They

are characterised by:

Single instruction: Only single instruction stream/linearised set is being

acted on by the CPU during any one clock-cycle.

Single data: Merely a distinct data stream is being used as input during any

one clock-cycle.

This is the oldest and of late, the most widespread structure of computer.

Examples: Most PCs, single CPU workstations and mainframes.

Figure 1.9 shows an example of SISD.

load A

load B

C = A + B

Store C

A = B * 2

store A

t
im

e

Figure 1.9: SISD Process

1.6.2 Single instruction multiple data (SIMD)

Computers with a single processor that is capable of executing vector

arithmetic operations using a single instruction stream but multiple data

streams are called SIMD (Single Instruction Multiple Data) computers. They

are characterised by:

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 19

Single instruction: Every processing unit perform the identical instruction

at every known clock-cycle.

Multiple data: Each processing unit can operate on a different data

element.

This category of machine characteristically has an instruction dispatcher, a

very high-bandwidth in-house arrangement, and a very large array of very

small-capacity instruction units. It is best suitable for specialised problems

characterised by a high level of consistency, such as image processing.

Figure 1.10 shows an example of SIMD processing.

prev instruct

load A(1)

load B(1)

C(1)=A(1)*B(1)

store C(1)

next instruct

prev instruct

load A(2)

load B(2)

C(2)=A(2)*B(2)

store C(2)

next instruct

prev instruct

load A(n)

load B(n)

C(n)=A(n)*B(n)

store C(n)

next instruct

t
i

m
e

P1 P2 Pn

Figure 1.10: SIMD Process

1.6.3 Multiple instruction single data (MISD)

Computers with multiple processors that are capable of executing different

operations using multiple instruction streams but single data stream are

called MISD (Multiple instruction Single Data) computers. They are

characterised by:

Multiple Instructions: Every processing unit functions on the data alone

via independent instruction streams.

Single data: A single data stream is entered into multiple processing units.

Some conceivable uses of this architecture are in multiple frequency filters

functional on a single signal stream and multiple cryptography algorithms

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 20

trying to crack a single coded message. Figure 1.11 shows an example of

MISD processing.

prev instruct

load A(1)

store C(1)

next instruct

C(1)=A(1)*1

t
i

m
e

P1 P2 Pn

prev instruct

load A(1)

store C(2)

next instruct

C(2)=A(1)*2

prev instruct

load A(1)

store C(n)

next instruct

C(n)=A(1)*n

Figure 1.11: MISD Process

1.6.4 Multiple Instruction Multiple Data (MIMD)

Computers with multiple processors that are capable of executing vector

arithmetic operations using multiple instruction streams and multiple data

streams are called MIMD (Multiple Instruction Multiple Data) computers.

They are characterised by:

Multiple Instructions: Each processor may be performing a dissimilar

instruction stream.

Multiple Data: Each processor may be working with a dissimilar data

stream.

It is the most common type of parallel computer. Most modern computers

fall into this category. Execution can be synchronous or asynchronous,

deterministic or non-deterministic.

Examples: most current supercomputers, networked parallel computer

“grids” and multi-processor computers. Figure 1.12 shows a case of MISD

processing.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 21

prev instruct

load A(1)

load B(1)

C(1)=A(1)*B(1)

store C(1)

next instruct

prev instruct

call funcD

x=y*z

sum=x*2

call sub1(ij)

next instruct

prev instruct

do 10 i = 1,N

alpha=w**3

zeta=C(i)

10 continue

next instruct

t
i

m
e

P1 P2 Pn

Figure 1.12: MIMD Process

Self Assessment Questions

12. In ___________ all processing units execute the same instruction at any

given clock cycle.

13. In which system a single data stream is fed into multiple processing

units?

14. ___________ is the most common type of parallel computer.

1.7 Parallelism and Types of Parallelism

A parallel computer is a set of processors that are able to work

cooperatively to solve a computational problem. This definition broadly

includes parallel supercomputers that have more than hundreds of

processors, networks of workstations, embedded systems and multiple-

processor workstations. Parallel computers have the potential to

concentrate computational resources like processors, memory, or I/O

bandwidth on important computational problems. The following are the

various types of parallelism:

Bit-level parallelism: Bit-level parallelism is a form of parallel computing

based on increasing processor word size. From the advent of very-large-

scale integration (VLSI) computer chip fabrication technology in the 1970s

until about 1986, advancements in computer architecture were conducted

by increasing bit-level parallelism

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 22

Instruction-level parallelism: A computer program is a stream of

linearised instructions carried out by a processor. These commands can be

rearranged and united into groups which are then acted upon in parallel

without altering the outcome of the program. This is known as instruction-

level parallelism. Advances in instruction-level parallelism dominated

computer architecture from the mid-1980s until the mid-1990s.

Data parallelism: Data parallelism is parallelism inbuilt in program loops. It

centres at allocating the data across various computing nodes to be

processed in parallel. Parallelising loops recurrently leads to related (not

necessarily identical) operation sequences or functions being performed on

elements of a large data structure. Many scientific and engineering

applications display data parallelism.

Self Assessment Questions

15. Parallel computers offer the potential to concentrate computational

resources on important computational problems. (True/ False)

16. Advances in instruction-level parallelism dominated computer

architecture from the mid-1990s until the mid-2000s. (True/False)

1.8 Levels of Parallelism

Parallelism is one of the most popular ideas in computing. Architectures,

compilers and operating system have been striving for more than two

decades to extract and utilise as much parallelism as possible in order to

speed up computation. The notion of parallelism is used in two different

contexts. Either it designates available parallelism in programs or it refers to

parallelism occurring during execution, called utilised parallelism.

Types of available parallelism: Problem solutions may contain two

different kinds of available parallelism, called functional parallelism and data

parallelism.

Functional parallelism is that kind of parallelism which arises from the logic

of a problem solution. On the contrary, data parallelism comes from using

data structures that allow parallel operations on their elements, such as

vectors or matrices, in problem solutions. From another point of view,

parallelism can be considered as being either regular or irregular. Data

parallelism is regular, whereas functional parallelism, with the execution of

loop-level parallelism, is usually irregular.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 23

Levels of available functional parallelism: Programs written in imperative

languages may represent functional parallelism at different levels, that is, at

different sizes of granularity. In this respect, we can identify the following

four levels and corresponding granularity sizes:

 Parallelism at the instruction level (fine-grained parallelism):

Available instruction-level parallelism means that particular instructions

of a program may be executed in parallel. To this end, instructions can

be either assembly (machine-level) or high-level language instructions.

Usually, instruction-level parallelism is understood at the machine-

language (assembly-language) level.

 Parallelism at the loop level (middle-grained parallelism):

Parallelism may also be available at the loop level. Here, consecutive

loop iterations are candidates for parallel execution. However, data

dependencies between subsequent loop iterations, called recurrences,

may restrict their parallel execution.

 Parallelism at the procedure level (middle-grained parallelism):

Next, there is parallelism available at the procedure level in the form of

parallel executable procedures. The extant of parallelism exposed at this

level is subject mainly to the kind of the problem solution considered.

 Parallelism at the program level (coarse-grained parallelism):

Lastly, different programs (users) are obviously independent of each

other. Thus, parallelism is also available at the user level (which we

consider to be coarse-grained parallelism). Multiple, independent users

are a key source of parallelism occurring in computing scenarios.

Utilisation of functional parallelism: Available parallelism can be utilised

by architectures, compilers and operating systems conjointly for speeding

up computation. Let us first discuss the utilisation of functional parallelism.

In general, functional parallelism can be utilised at four different levels of

granularity, that is,

 Instruction

 Thread

 Process

 User level

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 24

It is quite natural to utilise available functional parallelism, which is inherent

in a conventional sequential program, at the instruction level by executing

instructions in parallel. This can be achieved by means of architectures

capable of parallel instruction execution. Such architectures are referred to

as instruction-level function-parallel architectures or simply instruction-level

parallel architectures, commonly abbreviated as ILP-architectures.

Available functional parallelism in a program can also be utilised at the

thread and/or at the process level. Threads and processes are self-

contained execution entities embodying an executable chunk of code.

Threads and processes can be created either by the programmer using

parallel languages or by operating systems that support multi-threading or

multitasking. They can also be automatically generated by parallel compilers

during compilation of high-level language programs. Available loop and

procedure-level parallelism will often be exposed in the form of threads and

processes.

Self Assessment Questions

17. Parallelism occurring during execution is called –––––––––––––.

18. Parallelism at the instruction level is also called middle-grained

parallelism. (True/ False)

19. Data parallelism is regular, whereas functional parallelism, with the

execution of loop-level parallelism, is usually irregular. (True/ False)

Activity 2:

Decide which architecture is most appropriate for a given application.

First determine the form of parallelisation which would best suit the

application, then decide both hardware and software for running your

parallelised application

1.9 Summary

Let us recapitulate the important concepts discussed in this unit:

 Computer Architecture deals with the issue of selection of hardware

components and interconnecting them to create computers that achieve

specified functional, performance and cost goals.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 25

 The concept of a computational model represents a higher level of

abstraction than can be achieved by either the computer architecture or

the programming language alone, and covers both.

 History of computers begins with the invention of the abacus in 3000

BC, followed by the invention of mechanical calculators in 1617. Fifth

generation computers are still under research and development.

 Each process provides the resources needed to execute a program.

 A thread is the entity within a process that can be scheduled for

execution.

 Concurrent execution is the temporal behaviour of the N-client 1-server

model where one client is served at any given moment.

 Parallel execution is associated with N-client N-server model.

 Based on a number of instruction and data streams can be processed

simultaneously, Flynn classifies the computer system into four

categories.

 The notion of parallelism is used in two different contexts and three

different types. Either it designates available parallelism in programs or

it refers to parallelism occurring during execution, called utilised

parallelism.

1.10 Glossary

 EDSAC: Electronic Delay Storage Automatic Calculator

 EDVAC: Electronic Discrete Variable Automatic Computer

 ENIAC: Electronic Numerical Integrator and Calculator

 IC: Integrated Circuit where hundreds of transistors could be put on a

single small circuit.

 LSI: Large Scale Integration, it can pack more than a million transistors

 MSI: Medium Scale Integration, it packs as many as 100 transistors

 PCB: Process Control Block, it is a description table which contains all

the information relevant to the whole life cycle of a process.

 SSI: Small Scale Integration, it can pack 10 to 20 transistors in a single

chip.

 UNIVAC I: Universal Automatic Calculator

 USLI: Ultra Large-Scale Integration, it contains millions of components

on a single IC

 VLSI: Very Large Scale Integration, it can have up to 1000 transistors

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 26

1.11 Terminal Questions

1. Explain the concept of Computational Model. Describe its various types.

2. What are the different stages of evolution of Computer Architecture?

Explain in detail.

3. What is the difference between process and thread?

4. Explain the concepts of concurrent and parallel execution.

5. State Flynn’s classification of Parallel Processing.

6. Explain the types of parallelism.

7. What are the various levels of parallelism?

1.12 Answers

Self Assessment Questions

1. Problem description

2. Procedural style

3. Data-driven

4. Pascaline

5. IAS machine

6. False

7. True

8. True

9. False

10. N-client 1-server

11. True

12. Single Instruction Multiple Data

13. Multiple Instruction Single Data

14. Multiple Instruction Multiple Data

15. True

16. False

17. Utilised parallelism

18. False

19. True

Terminal Questions

1. A common foundation or paradigm that links the computer architecture

and language classes is called a Computational Model. Refer Section

1.2.

Computer Architecture Unit 1

Manipal University Jaipur B1648 Page No. 27

2. History of computers begins with the invention of the abacus in 3000

BC, followed by the invention of mechanical calculators in 1617. The

years beyond 1642 till 1980 are marked by inventions of zeroth, first,

second and third generation computers. Refer Section 1.3.

3. A thread is the entity within a process that can be scheduled for

execution. Refer Section 1.4.

4. Concurrent execution is the temporal behaviour of the N-client 1-server

model where one client is served at any given moment. Parallel

execution is associated with N-client N-server model. Refer Section 1.5.

5. Flynn classifies the computer system into four categories. Refer Section

1.6.

6. There are three types of parallelism. Refer section 1.7.

7. The notion of parallelism is used in two different contexts. Either it

designates available parallelism in programs or it refers to parallelism

occurring during execution, called utilised parallelism. Refer Section 1.8.

References:

 Hwang, K. (1993) Advanced Computer Architecture. McGraw-Hill, 1993.

 D. A. Godse & A. P. Godse (2010). Computer Organization. Technical

Publications. pp. 3–9.

 John L. Hennessy, David A. Patterson, David Goldberg (2002)

"Computer Architecture: A Quantitative Approach", Morgan Kaufmann;

3rd edition.

 Dezsö Sima, Terry J. Fountain, Péter Kacsuk (1997) Advanced

computer architectures - a design space approach. Addison-Wesley-

Longman: I-XXIII, 1-766

E-references:

 www.cs.clemson.edu/~mark/hist.html

 www.people.bu.edu/bkia/

 www.ac.upc.edu/

 www.inf.ed.ac.uk/teaching/courses/car/

http://www.cs.clemson.edu/~mark/hist.html
http://www.ac.upc.edu/

