
Programming in C Unit 10

Manipal University of Jaipur Page No.: 172

Unit 10 Structures and Unions

Structure:

10.1 Introduction

Objectives

10.2 Basics of Structures

10.3 Structures and Functions

10.4 Arrays of Structures

10.5 Pointers to Structures

10.6 Self-referential Structures

10.7 Unions

10.8 Summary

10.9 Terminal Questions

10.10 Answers to Self Assessment Questions

10.11 Answers to Terminal Questions

10.12 Exercises

10.1 Introduction

In the previous units, you studied about the pointers as a most powerful tool

in C programming language. It is due to the pointer only that makes C as the

most beautiful language. In this unit, you will study another useful ways of

making the program easy and efficient. This unit will enable you to learn

about the structures and unions.

As we know an array is a data structure whose elements are all of the same

data type. We now turn our attention to the structure, which is a data

structure whose individual elements can differ in type. Thus, a single

structure might contain integer elements, floating-point elements and

character elements. Pointers, arrays and other structures can also be

included as elements within a structure.

This unit is concerned with the use of structures within a C program. We will

see how structures are defined, and how their individual members are

accessed and processed within a program.

Closely associated with the structure is the union, which also contains

multiple members. Unlike a structure, however, the members of a union

share the same storage area, even though the individual members may

differ in type.

Programming in C Unit 10

Manipal University of Jaipur Page No.: 173

Objectives:

After studying this unit, you should be able to:

 handle a group of logically related data items known as structures.

 declare an array of structures, each element of the array representing a

structure variable.

 pass structure as an argument to functions and return structure from

functions.

 refer to (i.e., point to) an incomplete type, including itself.

 handle a group of logically related data items in terms of unions.

10.2 Basics of Structures

C supports a constructed data type known as structure, which is a method

for packing data of different types. A structure is a convenient tool for

handling a group of logically related data items. Structures help to organize

complex data in a more meaningful way. It is a powerful concept that we

may often need to use in our program design.

Structure Definition: A Structure definition creates a format that may be

used to declare structure variables. For e.g., Consider a book database

consisting of book name, author, number of pages and price.

struct book_bank

{

 char title[20];

 char author[15];

 int pages;

 float price;

};

The keyword struct declares a structure to hold the details of four fields,

namely title, author, pages and price. These fields are called structure

elements or members. Each member may belong to a different type of data.

book_bank is the name of the structure and is called the structure tag. The

tag name may be used subsequently to declare variables that have the tag’s

structure. Note that the above declaration has not declared any variables. It

simply describes a format called template to represent information as shown

below:

Programming in C Unit 10

Manipal University of Jaipur Page No.: 174

struct book_bank

 title

author

pages

price

We can declare structure variables using the tag name anywhere in the

program. e.g, the statement:

struct book_bank book1, book2, book3;

declares book1, book2 and book3 as variables of type book_bank.

Each one of these variables has four members as specified by the template.

The complete declaration might look like this:

struct book_bank

{

 char title[20];

 char author[15];

 int pages;

 float price;

};

struct book_bank book1, book2, book3;

It is also allowed to combine both the template declaration and variables

declaration in one statement.

struct book_bank

{

 char title[20];

 char author[15];

 int pages;

 float price;

} book1, book2, book3;

array of 15 characters

integer

float

array of 20 characters

Programming in C Unit 10

Manipal University of Jaipur Page No.: 175

General format of a Structure Definition:

The general format of a structure definition is as follows:

struct tag_name

{

 data_type member1;

 data_type member2;

};

In defining a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire declaration is considered as a statement, each member

is declared independently for its name and type in a separate statement

inside the template.

3. The tag name such as tag_name can be used to declare structure

variables of its type, later in the program.

Giving values to Members:

Structure members need to be linked to the structure variables in order to

make them meaningful members. The link between a member and a

variable is established using the member operator ‘.’ which is also known as

‘dot operator’ or ‘period operator’.

Here is how we would assign values to the members of book1.

strcpy(book1.title,”BASIC”);

strcpy(book1.author,”Balagurusamy”);

book1.pages = 250;

book1.price = 28.50;

We can also give the values through the keyboard.

gets(book1.title);

gets(book1.author);

printf(“%d”,book1.pages);

printf(“%f”,book1.price);

Programming in C Unit 10

Manipal University of Jaipur Page No.: 176

Structure Initialization:

void main()

{

struct st_record

{

 char name[20];

 int weight;

 float height;

};

static struct st_record student1 = {“Suresh”, 60, 180.75};

static struct st_record student2 = {“Umesh”, 53, 170.60};

}

Program 10.1: To print the date of joining of a person

#include<conio.h>

#include<stdio.h>

struct personal

{

char name[30];

int day;

int month;

int year;

float salary;

};

void main()

{

struct personal p;

printf(“Enter the name:\n)";

gets(p.name);

printf(“Enter the day of joining:\n)";

scanf(“%d”,&p.day);

Programming in C Unit 10

Manipal University of Jaipur Page No.: 177

printf(“Enter the month of joining:\n");

scanf(“%d”,&p.month);

printf(“Enter the year of joining:\n)";

scanf(“%d”,&p.year);

printf(“Enter the salary:\n)";

scanf(“%f”, & p.salary);

printf(“\nName:",p.name);

printf("\nDate of joining:%d %d %d",p.day,p.month,p.year);

printf(“Salary:",p.salary);

getch();

}

Comparison of structure variables

Two variables of same structure type can be compared in the same way as

ordinary variables. If person1 and person2 belong to the same structure,

then the following operations are valid:

 Operation Meaning

person1 = person2 Assign person2 to person1

person1 == person2 Compare all members of person1 and

person2 and return 1 if they are

equal, 0 otherwise.

person1 != person2 Return 1 if all the members are not

equal, 0 otherwise

Program 10.2: To Compare structure variables

#include <stdio.h>

#include<conio.h>

struct stclass{

 int number;

 char name[20];

 float marks;

};

void main()

Programming in C Unit 10

Manipal University of Jaipur Page No.: 178

{

 int x;

 static struct stclass student1 = {111,"Rao",72.50};

 static struct stclass student2 = {222,"Reddy",67.00};

 struct stclass student3;

 student3 = student2;

 x=((student3.number == student2.number) && (student3.marks ==

student2.marks))? 1:0;

 if(x==1)

 {

 printf("\nStudent2 and Student3 are same ");

 printf(“ %d\t %s\t %f\t“,student3.number,student3.name,student3.marks);

 }

 else

 {

 printf("\nStudent2 and student3 are different)";

 }

 getch();

}

Self Assessment Questions

1. A ___________ is a convenient tool for handling a group of logically

related data items.

2. We can declare structure variables using the tag name anywhere in the

program. (True/False)

3. ____________ is a method for packing data of different types.

4. If person1 and person2 are variables of the same type structure then

the expression person1>person2 is valid. (True/False)

5. _______________ is a method for packing data of different types.

6. The link between a member and a variable is established using the

member operator ______________.

10.3 Structures and Functions

We can write programs with structures by using modular programming. We

can write a function that returns the structure. While writing the function, you

should indicate the type of structure that is returned by the function. The

return statement should return the structure using a variable. It is possible

Programming in C Unit 10

Manipal University of Jaipur Page No.: 179

to pass a structure as an argument. We can modify a member of the

structure by passing the structure as an argument. The changes in the

member made by the function are retained in the called module. This is not

against the principle of call by value because we are not modifying the

structure variable, but are instead modifying the members of the structure.

Program 10.3: To illustrate the concept of structures and functions

struct student

{

 name char[30];

 marks float;

};

main ()

{

 struct student student1;

 student1 = read_student ();

 print_student(student1);

 read_student_p(student1);

 print_student (student1);

}

struct student read_student()

{

 struct student student2;

 gets(student2.name);

 scanf("%d",&student2.marks);

 return (student2);

}

void print_student (struct student student2)

{

 printf("name is %s\n", student2.name);

 printf("marks are%d\n", student2.marks);

}

void read_student_p(struct student student2)

{

 gets(student2.name);

 scanf("%d",&student2.marks);

}

Programming in C Unit 10

Manipal University of Jaipur Page No.: 180

Explanation

1. The function read_student reads values in structures and returns the

structure.

2. The function print_student takes the structure variable as input and

prints the content in the structure.

3. The function read_student_p reads the data in the structure similarly to

read_student. It takes the structure student as an argument and puts

the data in the structure. Since the data of a member of the structure is

modified, you need not pass the structure as a pointer even though

structure members are modified. Here you are not modifying the

structure, but you are modifying the structure members through the

structure.

Self Assessment Questions

7. We cannot write a function that returns the structure. (True/False)

8. We can modify a member of the structure by passing the structure as a

_____________.

10.4 Arrays of Structures

We can use structures to describe the format of a number of related

variables. For example, in analyzing the marks obtained by a class of

students, we may use a template to describe student name and marks

obtained in various subjects and then declare all the students as structure

variables. In such cases, we may declare an array of structures, each

element of the array representing a structure variable. e.g, struct stclass

student[100]; defines an array called student, that consists of 100 elements.

Each element is defined to be of the type struct stclass. Consider the

following declaration:

struct marks

{

 int subject1;

 int subject2;

 int subject3;

};

main()

Programming in C Unit 10

Manipal University of Jaipur Page No.: 181

{

 static struct marks student[3]={{45,68,81},{75,53,69},{57,36,71}};

}

This declares the student as an array of three elements student[0],

student[1] and student[2] and initializes their members as follows:

student[0].subject1 = 45;

student[0].subject2 = 68;

……..

student[2].subject3 = 71;

Program 10.4: To process employee details using structures

#include<conio.h>

#include<stdio.h>

struct employee

{

int empno;

char name[30];

int basic;

int hra;

};

void main()

{

int i,j,n,net[50];

float avg;

employee e[50];

printf("\nEnter the number of employees:");

scanf(“%d”, &n);

printf(“\nEnter Empno.\tName\tBasic\tHra of each employee:\n");

for(i=0;i<n;i++)

{

 scanf(“%d”,&e[i].empno);

 gets(e[i].name);

 scanf(“%d”,&e[i].basic);

 scanf(%d”,&e[i].hra);

 net[i]= e[i].basic+e[i].hra;

 avg=avg+net[i];

}

Programming in C Unit 10

Manipal University of Jaipur Page No.: 182

avg=avg/n;

printf("\nEmpno.\tName\tNetpay\n");

for(i=0;i<n;i++)

{

if(net[i]>avg)

{

 printf(e[i].empno\t)";

 printf(e[i].name\t)";

 printf(net[i]\n");

}

}

getch();

}

Program 10.5: To process student details using structures

#include<conio.h>

#include<stdio.h>

struct student

{

int rollno;

char name[30];

int marks1;

int marks2;

int marks3;

};

void main()

{

int i,j,n,tot[50],t;

student s[50],temp;

printf("\nEnter the number of students:");

scanf(“%d”,&n);

printf("\nEnter Rollno.\tName\tMarks1\tMarks2\tMarks3 of each student:\n");

for(i=0;i<n;i++)

{

 scanf(“%d”,&s[i].rollno);

 gets(s[i].name);

 scanf(“%d”,&s[i].marks1);

Programming in C Unit 10

Manipal University of Jaipur Page No.: 183

 scanf(“%d”,&s[i].marks2);

 scanf(“%d”,&s[i].marks3);

tot[i]= s[i].marks1+s[i].marks2+s[i].marks3;

}

for(i=0;i<n-1;i++)

{

 for(j=i+1;j<n;j++)

 {

 if(tot[i]<tot[j])

 {

 temp=s[i];

 s[i]=s[j];

 s[j]=temp;

 t=tot[i];

 tot[i]=tot[j];

 tot[j]=t;

 }

 }

}

printf("\nRollno.\tName\tTotal marks in decreasing order of total marks

is:\n");

for(i=0;i<n;i++)

{

printf(“%d\t”,s[i].rollno);

printf(“%s\t”,s[i].name);

printf(“%d\t”,s[i].tot);

}

getch();

}

Self Assessment Questions

9. We can use structures to describe the format of a number of related

variables. (True/False)

10. You can declare an array of structures where each element is defined

to be of the type _________.

Programming in C Unit 10

Manipal University of Jaipur Page No.: 184

10.5 Pointers to Structures

Pass by value may be very inefficient if the structure is large (i.e., has many

members). They have identical declaration syntax and member access, but

they serve a very different purpose. Defining pointer types is the same as for

variables of primitive types.

Example:

struct Point {

 int x;

 int y;

 };

struct Rectangle {

 struct Point topleft;

 struct Point bottomright;

 };

 struct Point pt = { 50, 50 };

 struct Point *pp;

 pp = &pt;

 (*pp).x = 100; /* pt.x is now 100. */

Notice the parentheses around the de referenced pointer.

(*pp).x = 100;

This is necessary to enforce correct precedence.

An alternative notation permits simpler pointer access to structure members.

(*pp).x = 100;

pp->x = 100; /* equivalent */

Another example,

 struct Rectangle rect, *pr = ▭

 rect.topleft.x = 50; /* equivalent operations */

 (*pr).topleft.x = 50;

 pr->topleft.x = 50;

Programming in C Unit 10

Manipal University of Jaipur Page No.: 185

Self Assessment Questions

11. The parentheses around the de referenced pointer is necessary to

enforce the correct _________.

12. An alternative notation other than dot, permits simpler pointer access to

structure members is ____________.

10.6 Self-referential Structures

The ability to refer to (ie, point to) an incomplete type, including itself, is an

important property for constructing a variety of data-structures. For example:

linked-lists, binary trees, graphs, hash tables, and more.

Linked lists come in two basic varieties: singly linked and doubly linked.

We describe here a simple version of a singly linked list.

List consists of a set of nodes, where each node contains an item and a

pointer to another list node.

 struct List {

 int item;

 struct List *next;

 };

More about linked lists, you will study in the units to come.

10.7 Unions

Unions look similar to structures. They have identical declaration syntax and

member access, but they serve a very different purpose.

 union Utype {

 int ival;

 float fval;

 char *sval;

 };

 union Utype x, y, z;

Accessing members of a union is via “.” member operator or, for pointers to

unions, the -> operator.

A union holds the value of one-variable at a time. The compiler allocates

storage for the biggest member of the union. The type retrieved from the

Programming in C Unit 10

Manipal University of Jaipur Page No.: 186

union must be the type most recently stored. Otherwise, the result is

implementation dependent.

 union Utype x;

x.fval = 56.4; /* x holds type float. */

 printf("%f\n", x.fval); /* OK. */

 printf("%d\n", x.ival); /* Implementation dependent. */

Unions are used to store one of a set of different types. These are

commonly used to implement a “variant” array. (This is a form of generic

programming.) There are other uses also, but they are quite advanced

(e.g., concern the alignment properties of unions).

Self Assessment Questions

13. A __________ holds the value of one-variable at a time.

14. The compiler allocates storage for the smallest member of the union.

(True/False)

10.8 Summary

A structure is a convenient tool for handling a group of logically related data

items. Structure members need to be linked to the structure variables in

order to make them meaningful members. We can write programs with

structures by using modular programming. We can use structures to

describe the format of a number of related variables. Passing a pointer to a

structure is generally much more efficient than making a copy of the

structure itself. The ability to refer to (i.e., point to) an incomplete type,

including itself, is an important property for constructing a variety of data-

structures.

Unions have identical declaration syntax and member access, but they

serve a very different purpose. A union holds the value of one-variable at a

time. The compiler allocates storage for the biggest member of the union.

10.9 Terminal Questions

1. Write the output that will be generated by the following C program:

typedef struct

{

char *a;

char *b;

Programming in C Unit 10

Manipal University of Jaipur Page No.: 187

char *c;

} colors;

void main()

{

void fun(colors sample);

static colors sample = {“red”, “green”, “blue”};

printf((“%s %s %s\n”, sample.a, sample.b,

 sample.c);

fun(sample);

printf((“%s %s %s\n”, sample.a, sample.b,

 sample.c);

}

void fun (colors sample)

{

strcpy (sample.a=”cyon”);

strcpy (sample.b=”magenta”);

strcpy (sample.c=”yellow”);

printf(“%s %s %s\n”, sample.a, sample.b,

sample.c);

return;

}

2. Describe the output generated by the following program. Distinguish

between meaningful and meaningless output.

#include <stdio.h>

main()

{

union {

int i;

float f;

double d;

} u;

printf(“%d\n”, sizeof(u));

u.i= 100;

printf(“%d %f %f\n”, u.i, u.f, u.d);

Programming in C Unit 10

Manipal University of Jaipur Page No.: 188

u.f=0.5;

printf(“%d %f %f\n”, u.i, u.f, u.d);

u.d = 0.0166667;

printf(“%d %f %f\n”, u.i, u.f, u.d);

}

10.10 Answers to Self Assessment Questions

1. structure

2. true

3. Array

4. false

5. Structure

6. dot(.)

7. true

8. argument.

9. True

10. struct

11. precedence

12. ->

13. union

14. false

10.11 Answers to Terminal Questions

1. red green blue

cyan magenta yellow

red blue green

2. 8

100 0.000000 -0.000000

0 0.500000 -0.000000

-25098 391364288.000000 0.016667

The first line displays the size of the union (8 bytes, to accommodate double

data). In the second line, only the first value (100) is meaningful. In the third

line, only the second value (0.500000) is meaningful. In the last line, only

the last value (0.016667) is meaningful.

Programming in C Unit 10

Manipal University of Jaipur Page No.: 189

10.12 Exercises

1. What is a structure? How does a structure differ from an array?

2. What is a member? What is the relationship between a member and a

structure?

3. Describe what is wrong in the following structure declaration:

struct

{

int number;

float price;

}

main()

{

 …………….

………………

}

4. Describe Array of structures with an example program.

5. Define a structure called cricket that will describe the following

information:

(i) player name (ii) team name (iii) batting average

 Using cricket, declare an array player with 50 elements and write a

program to read the information about all the 50 players and print a

team-wise list containing names of players and print a team-wise list

containing names of players with their batting average.

6. How is a structure type pointer variable declared?

7. Write a program to find the number of characters in a string using

pointers.

